Procemin-GEOMET 2018

14th International Mineral Processing Conference 5th International Seminar on Geometallurgy

Integral Planning of the Process-Chain Performance

Jorge M. Menacho, Guillermo Vega and Sebastián Manríquez, drm@drm.cl De Re Metallica Ingenieria, DRM Technology SpA

GECAMIN

Introduction

- Estimate of Copper Production Plans today is often imprecise
- Current tools to predict throughput and recovery are not enough fine to assure realistic results along the process chain and the time.
- The block model is quite approximate and it normally calculates under static process conditions.
- Dynamic phenomenological models properly complemented with predictive maintenance models, sensitive to characteristics of the ore, actual operational conditions and "random" process variability are needed to approach the reality.
- Also a cost/benefit algorithm is convenient to include in order to provide an economical viewpoint to take business decisions.

Framework

Procemin-GEOMET 2018

SMI**JKMRC** hits Kontachet Mineral BMI**ICE**Chile Universidad de Concepción

GECAMIN

Models Description

<u>Blasting</u>: Population balance approach (fully described in a separated paper Procemin 2018)

<u>Crushing</u>: Population balance approach for the crushers and Tromp curve for the screen classifiers

<u>SAG milling</u>: It has 4 submodels: (i) Population balance, (ii) Power consumption, (iii) Mass transport and (iv) Slurry evacuation

<u>Ball milling</u>: It includes 3 submodels: (i) Population balance, (ii) Power consumption and (iii) Grate classifier when applies

<u>Flotation plant</u>: 2-phase kinetic flotation model. Parameter sensitive to particle size profile, mineralogy, liberation, bubble size profile and operational conditions

<u>Maintenance model</u>: Historical maintenance matrix, characteristics of the ores and operational condition. It predicts availability, downtime and troughput

<u>Cost/Benefit model</u>: Cost distribution matrix, it estimates net benefit per period.

Impact of Variability on Planning Issues

Production according the year average plan is 231,775 t Cu while the monthly plan estimates 229,366 t Cu. The daily plan which is the most realistic, indicates just 228,683 t Cu, that is, over 3,000 tons difference between the extremes.

Linear estimation approaches such as Kriging and similar are not valid to set continuity for non-linear and non-additive variables such recovery, because what is gain by over recovery is in most cases lower that what is lost by under recovery.

Physical Quality Model

Ore	Ox-03	Ox-04	Ox-01	Ox-02	SS-02	SS-03	Mix-01	Mix-02	SS-01
Alteration Ser.+Argíl.	18.4	14.3	14.1	13.9	12.1	12.0	0.6	0.5	0.7
Unit Weight., t/m ³	2.55	2.53	2.58	2.53	2.62	2.56	2.66	2.67	2.62
UCS, MPa	42.98	50.62	57.21	58.79	56.43	71.67	72.33	91.21	91.57
TR, MPa	5.74	6.72	6.34	7.45	8.22	7.85	9.68	10.19	8.10
Young Index, GPa	29.8	32.2	33.0	35.1	39.3	38.1	42.3	44.1	46.6
RQD, %	80.16	80.51	73.40	75.47	94.38	91.26	92.93	92.93	94.84
FF, f/m	7.70	7.75	9.84	9.06	3.25	4.32	3.65	3.77	2.88
LRS, cm	163.15	166.37	153.29	155.92	190.68	186.12	189.13	189.13	191.70
GSI, %	43.78	45.88	42.96	44.91	55.37	53.73	53.94	54.72	54.82
RRD, %	3.09	3.43	3.35	3.41	3.97	3.94	3.86	3.89	3.92
Physical Quality Index	1	2		3		4			

The physical quality groups naturally arise from the ranking of attributes. Four groups are here identified.

Procemin-GEOMET 2018

SMI JKMRC

SMI**ICE**Chile

J

Universidad de Concepción

GECAMIN

Study Case: Current Condition

DRILLING AND BLASTING	
Burden, m	8.0
Spacing, m	9.0
Powder Factor FC, g/t	650
Drilling Diameter, in	12.25
ORE IN STOCKPILE	
CuT, %	1.20
FeT, %	1.71
Сру, %	1.21
Cc, %	0.78
Cv, %	0.25
CRUSHING	
Throughput, t/h	4,580
CSS Primary Crusher, mm	178
Crusher Power, kW	167
GRINDING	
Retained on 100#, %	25.2
Product P80, mm	0.22
Ball Mill Fractional Ball Filling, %	35
Grinding Total Power, kW	50,973
FLOTATION	
Rougher Flotation Time, min	28.13
Collector Dose, g/t	14.68
Rougher Mean Froth Height, cm	68
Cleaner Mean Froth Height, cm	90

Procemin-GEOMET 2018

SMI JKMRC Julius Kruttschnitt Mineral Research Centre SMIICEChile

J

Universidad de Concepción

Study Case: OPEX Distribution

Open-Pit Mine Cost Distribution		Concentrator Plant Cost Distribution			
Mine Processes	Cost Matrix, %	Concentrator	Cost Matrix, %		
Drilling	0.5	Crushing	4.0		
Water	0.6	Grinding	49.0		
Truck Hopper Expense	0.9	Collective Flotation	11.0		
Others	1.1	Selective Flotation	4.0		
Electric Energy	1.1	Tailings	3.0		
Blasting	6.1	Desalinated Water	21.0		
Tires	7.2	Auxiliaries	5.0		
Wages	11.2	Others	3.0		
Fuel (Oil and Lubricants)	28.6				
Maintenance and Repair	42.7				

The Challenge

GECAMIN

Models Fit

Procemin-GEOMET 2018

SMIJKMRC Julius Karlantet Minoral SMIICEChile Universidad de Concepción

Models Fit

Procemin-GEOMET 2018

SMIJKMRC Julius Kritischrist Mineral Benderch Carlie SMIICEChile Universidad de Concepción

Results: Single Feed vs Double Feed

Parameter	Single Food	Doubl	Delta	
Single feed	Single Feed	High Grade	Low Grade	Benefit
Throughput, %	100	50	50	1000
Head Copper Grade, %	1.19	1.41	0.98	
Powder Factor FC, g/t	650	800	500	North St.
Ball Filling JB, %	35	38	32	
Collector Dose, g/t	14.68	17.36	12.00	
Rougher Mean Froth Height, cm	68	60	75	
Cleaner Mean Froth Height, cm	90	80	100	
Overall Cu Recovery, %	78.59	93.07	70.69	1 m m
Cu Grade in Final Concentrate, %	34.18	34.08	34.37	
Cost, USM\$/year	1,225	637	618	
Incomes, USM\$/year, 317 ¢/lb Cu	2,640	1,829	959	See.
Benefit, USM\$/year	1,415	1,534		119
Incomes, USM\$/year, 250 ¢/lb Cu	2,082	1,442	756	177
Benefit, USM\$/year	857	944		87

Procemin-GEOMET 2018

SMIJKMRC Julia Kottechnikt Minneal Basaarch Cartholite SMIJCEChile Universidad de Concepción

Final Remarks

- Decreasing grades and cyclic metal prices demand different ways to get better results: Sorting technology, automated remote dispatch and better management of stockpiles is a main route. Selective optimization practices demonstrate significant benefit as shown in the Study Case here presented.
- Today more than never the integrated view of the production chain is a "must". Planning tasks should be assisted by Process/ Maintenance/Economical simulators.
- Well-settled phenomenological models can be enpowered with learning machine tools to reach optimal results. This is the next model generation.

