FLOTATION 2018 III Minerals Flotation International Congress Lima, June 07 - 08

"A New Approach to Flotation Plants"

Authors: J.M. Menacho, L.A. Verdugo and J.S. Manríquez, De Re Metallica Ingeniería SpA, DRM-Tech

Did You Know That...?

SECURES PATENT ON HER

orrice

Carrie Jane Billings Everson (1843 – 1911).

Mrs. Everson discovered and proved a method for bulk oil flotation concentration of mineral ores, the precursor to modern froth flotation methods of minerals concentration. She patented her process in 1886 and ran a demonstration plant in the early 1890's. US Patent 348,157, (1886) "Process of Concentrating Ores".

The 12 November 1915 Denver Times ran this interpretation of Carrie Everson's process Discovery and life.

https://www.mininghistoryassociation.org/Journal/MHJ-v12-2005-Bunyak.pdf

1

Basics on Flotation Circuit

Common Arrangement

Banks and Lines

CONCENTRATOR	CELL VOLUME,m ³	NUMBER OF CELLS	BANK ARRANGEMENT	DIAGRAM
Esperanza	300	7	1-2-2-2	
Candelaria	130	10	2-2-2-2-2	
Delambras	130	9	1-2-2-2-2	
Pelamores	250	5	1-1-1-1	
Chuquicamata	160	8	2-2-2-2	
Eccondida	160	9	1-1-1-2-2-1	
Esconulua	100	10	2-2-3-3	
Collabuaci	130	9	1-2-2-2-2	
Collahuasi	160	8	1-2-2-2-2	
Andina	100	8	2-2-2-2	

http://www.iimp.org.pe/pptjm/jm20140508_Yianatos.pdf

4

Parallel Line Arrangement...

The Rougher Scavenger Step

CCC is the most efficient way to concentrate, but not the highest capacity way. Recovery becomes the same in the plateau region, with the higher grade advantage. It always reduces requirement in the cleaning step.

6

The Outstanding Role of the Froth

Froth control is a key aspect to optimize the flotation results. Consequently, any optimization model must have explicit dependency with the froth height and velocity in order to be realistic.

Bank flotation model: N well-mixed reactor connected in-series; first order kinetics, Cu and gangue components; Slurry and froth phases

Ref.: Client DRM Report 350-01-2011

The Flotation Plant is Part of a Major

Business Strategies

Main Driving Forces
✓ Decreasing grade

Decreasing grades
Cyclic metal prices

<u>Usual</u>

- The largest throughput
- Intensive blasting
- Coarse grinding
- The simplest flotation circuit
- High water recovery
- Contained cost policy
- And pray for the price keep high!!!

<u>Required</u>

- Precon tech to avoid excessive tonnages
- Business view from geology to market
- Tailings as potential asset
- Automation within Big Data and IoT frame
- Flexible process chain and modular plants
- Maximum water recovery
- Improved management of mine stocks
- Metallurgical blasting
- Process-oriented maintainability

Projected Cu Grade in Chile

https://www.cochilco.cl/Listado%20Temtico/Inversi%C3%B3n%20en%20la%20miner%C3%ADa %20chilena%20-%20Cartera%20de%20proyectos%202014%20-2023.pdf http://www.miningpress.com/nota/294168/la-borg-de-invertir-en-cobre-la-recuperacion-

http://www.miningpress.com/nota/294168/la-hora-de-invertir-en-cobre-la-recuperaciongradual-de-las-materias-primas

Cyclic Behavior of the Copper Price

J. Menacho, "Macroeconomics and the Copper Business: Past, Present and Future" 8th Int. Seminar on Process Hydrometallurgy, Santiago, June 15–17, 2016.

Future Price According to Experts

http://www.portalminero.com/display/NOT/2015/08/12/Expertos+estiman+precio+del+Cobre+ sobre+USD+3%2C00+por+libra+en+2018-2022

The Mine is not a Supermarket, but It Should Be...

Accomodating the Flotation Circuit

Tailings: From Waste to Asset

Historically, plants have shown little concern on systematic waste disposal... key aspect to economically recover valuable components.

J. Menacho, "Mine-to-Plant Strategies within the Cyclic Copper Business" 12th International Mineral Processing Conference, Santiago, 26 – 28 de Octubre 2016.

Smart Planning and Operation

Re-Thinking the Overall Circuit...

Keep High Reliability, Availability and Utilisation KPI's...

iency, %

to Ore-Process-Machines and the

Maintenance intensity.

... In addition to pure Maintainance models, integrated predictors are useful for optimum planning.

210 days

Alt. 74%

Alt. 75%

210 davs

Program Tonnage

Example: Prediction of concave change in the primary crusher from geological and process model:

Alt. 66%

240 days

Model Tonnage

Alt. 84% Alt. 82%

120 days / 150 days

Study Case

Plant Description

Main Operational Conditions

DRILLING AND BLASTING	
Burden, m	8.0
Spacing, m	9.0
Powder Factor FC, g/t	500
Drilling Diameter, in	12.25
ORE IN STOCKPILE	
CuT,%	1.19
FeT,%	1.71
Сру,%	1.21
Сс,%	0.78
Cv,%	0.25
CRUSHING	
Throughput, t/h	4,257
CSS Primary Crusher, mm	178
Crusher Power, kW	167
GRINDING	
Retained on 100#, %	25.2
Product P80, mm	0.22
Ball Mill Fractional Ball Filling, %	32
Grinding Total Power, kW	50,973
FLOTATION	
Rougher Flotation Time, min	28.13
Collector Dose, g/t	12
Rougher Mean Froth Height, cm	80
Cleaner Mean Froth Height, cm	80

OPEX Distribution

Cochilco, "Identificación de insumos críticos para el desarrollo de la minería en Chile", Pub. 2014. 21

Options to Be Evaluated

Technical-Economical Dynamic Simulator as Planning Tool

< DRm>

Process-Model Calibration

Net Benefit vs Powder Factor

Overall Recovery/Grade vs Powder Factor

DRm

Rghr. Recovery vs BM Filling in Ball Mills

Rougher Recovery vs Collector Dose

Rougher Recovery/Grade vs Froth Height

Rghr. Recovery/Net Benefit/Particle Size

DRm

Net Benefit vs Throughput

Summarized Results of the Study Case

		Par
		Thr
		Hea
		Ρον
		Bal
		Col
		Rou
		Cle
		Ove
		Cu
		Cos
		Inc
		Ber
	DRILLING	
The second se	BLASTING	
	↓	
	LOAD AND TRANSPORT	
	STO	CKPILF
		RIMARY

Parameter	Base Case	High Grade	Low Grade	Base Case	High Grade	Low Grade
Throughput, t/h	4,257	2,129	2,129	4,257	2,129	2,129
Head Copper Grade, %	1.20	1.41	0.98	1.20	1.41	0.98
Powder Factor FC, g/t	650	800	500	650	800	500
Ball Filling JB, %	35	38	32	35	38	32
Collector Dose, g/t	14.68	17.36	12.00	14.68	17.36	12.00
Rougher Mean Froth Height, cm	68	60	75	68	60	75
Cleaner Mean Froth Height, cm	90	80	100	90	80	100
Overall Cu Recovery, %	78.59	93.07	70.69	78.59	93.07	70.69
Cu Grade in Final Concentrate, %	34.18	34.08	34.37	34.18	34.08	34.37
Cost, USM\$/year	1,225	637	618	1,225	637	618
Incomes, USM\$/year	2,640	1,829	959	2,082	1,442	756
Benefit, USM\$/year	1,415	1,193	341	857	806	138

1,534 (317 ¢/lb)

944 (250 ¢/lb)

Final Remarks

- Current process strategy includes the largest effective throughput, an intensive blasting, a coarse grinding, the simplest flotation circuit and a maximum water recycle. This is complemented with a contained cost policy.
- ✓ Decreasing grades and cyclic metal prices demand additional measures: Preconcentration technology, selective dispatch and better management of stockpiles are necessary to consider.
- ✓ Today more than never the integrated view of the production chain is a "must". Planning tasks should be assisted by Process/Maintainance/Economical simulators. Do not confuse accountability simulation with predicting dynamic simulation.
- ✓ Blasting must be promoted to "metallurgical unit process" and it needs to be optimized from the business viewpoint.
- ✓ It is verified in the Study Case the business is more sensitive to throughput compared to recovery with a slow displacement to lower tonnage as the copper price reduces.

Final Remarks

- Maximum metal-mass throughput can be assisted by other asset feeds, like low grade ores and tailings. Modular and flexible plant flowsheets are needed. Tailings need to be disposed according to specific quality.
- ✓ Automate as much as possible, but go beyond the conventional concept, thinking now in Big Data, Artificial Intelligence and IoT framework.
- ✓ The economical viewpoint has to be always present. Main cash cost item in Chile are:

Open Pit Mine, %		Concentrator Plant, 9	6
Maintenance and Repair	43	Grinding	49
Fuels	29	Desalination Plant	21
Wages	11	Flotation	15
Tires	7	Tailings and Auxiliaries	8
Blasting	6	Others	7
Others	4		
Total	100	Total	100

FLOTATION 2018 III Minerals Flotation International Congress Lima, June 07 - 08

"A New Approach to Flotation Plants"

Authors: J.M. Menacho, L.A. Verdugo and J.S. Manríquez, De Re Metallica Ingeniería SpA, DRM-Tech

